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Stochastic Spacetime and Brownian
Motion of Test Particles

L. H. Ford1

The operational meaning of spacetime fluctuations is discussed. Classical spacetime
geometry can be viewed as encoding the relations between the motions of test particles
in the geometry. By analogy, quantum fluctuations of spacetime geometry can be
interpreted in terms of the fluctuations of these motions. Thus, one can give meaning
to spacetime fluctuations in terms of observables which describe the Brownian motion
of test particles. We will first discuss some electromagnetic analogies, where quantum
fluctuations of the electromagnetic field induce Brownian motion of test particles.
We next discuss several explicit examples of Brownian motion caused by a fluctuating
gravitational field. These examples include lightcone fluctuations, variations in the flight
times of photons through the fluctuating geometry, and fluctuations in the expansion
parameter given by a Langevin version of the Raychaudhuri equation. The fluctuations
in this parameter lead to variations in the luminosity of sources. Other phenomena that
can be linked to spacetime fluctuations are spectral line broadening and angular blurring
of distant sources.

KEY WORDS: Brownian motion; spacetime fluctuations.

1. INTRODUCTION

It is well known that classical spacetime geometry can be mapped by the mo-
tion of classical test particles which move along geodesics in the given geometry.
Here test particle will be understood to include both massive particles, which move
on time-like geodesics, and light rays moving on null geodesics. The fundamen-
tal quantity needed to characterize a spacetime geometry is the Riemann tensor,
which in turn can be characterized by the phenomenon of geodesic deviation.

A basic feature of a theory which combines quantum theory and gravitation is
expected to be fluctuations of the spacetime geometry. These fluctuations can arise
either from the quantum nature of the gravitational field itself (active fluctuations),
or from quantum fluctuations of the matter stress tensor (Ford, 1982; Kuo and
Ford, 1993; Phillips and Hu, 1997) (passive fluctuations). In general, both types of
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fluctuations can be present simultaneously (Calzetta and Hu, 1993, 1995; Calzetta
et al., 1997; Hu and Shiokawa, 1998; Martin and Verdaguer, 1999).

The key question which we wish to address is how to give an operational
significance to fluctuations of the spacetime geometry. Test particles will no longer
follow fixed classical geodesics, but will rather undergo Brownian motion around
a mean geodesic. This Brownian motion can be described by the quadratic fluc-
tuations of some quantity characterizing the variation from the mean geodesics.
Some explicit examples will be treated below.

2. ELECTROMAGNETIC ANALOGIES

In this section, we will discuss some examples of fluctuating forces of elec-
tromagnetic origin that are useful as analogies to the effects of the fluctuations of
gravity. Specifically, we will examine the Brownian motion of a charged test par-
ticle coupled to a fluctuating electromagnetic field, radiation pressure fluctuations
of a mirror, and Casimir force fluctuations.

2.1. Classical Brownian Motion

Consider a nonrelativistic charged particle of mass m and charge q in the
presence of an electric field E. If we ignore magnetic forces, the particle’s velocity
satisfies

dv
dt

= q

m
E(x, t) . (1)

If the particle starts at rest at time t = 0, then we can write

v = q

m

∫ t

0
E(x, t) dt , (2)

where in general x = x(t). Here we will assume that the particle does not move
very far on the timescales of interest, so we can ignore the time dependence of x.

Now suppose that the electric field undergoes fluctuations, so the mean tra-
jectory of the particle is obtained by averaging Equation (2):

〈v〉 = q

m

∫ t

0
〈E(x, t)〉 dt . (3)

The fluctuations around the mean trajectory in the i-direction are described by

〈
�v2

i

〉 = q2

m2

∫ t

0

∫ t

0
[〈Ei(x, t1) Ei(x, t2)〉 − 〈Ei(x, t1)〉 〈Ei(x, t2)〉] dt1 dt2 .

(4)
Thus, the dispersion in the i-component of velocity is given as a double time
integral of an electric field correlation function. Let C denote this correlation
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Fig. 1. A correlation function typical of classical
fluctuations. The correlation function C(τ ) is non-
negative, and decreases monotonically. The charac-
teristic width of C(τ ) is the correlation time, τc.

function, and assume that it is a function of the time difference τ = |t1 − t2| only,
so we can write

C(τ ) = 〈Ei(x, t1) Ei(x, t2)〉 − 〈Ei(x, t1)〉 〈Ei(x, t2)〉 . (5)

In this case, we may write Equation (4) as

〈
�v2

i

〉 = 2
q2

m2

∫ t

0
(t − τ ) C(τ ) dτ . (6)

The simplest possibility is classical or thermal-like fluctuations. Here the
correlation function C is non-negative, and decays monotonically on a timescale
of τc, the correlation time, as illustrated in Fig. 1. In this case, performing the
integration in Equation (6) will yield a result of the form

〈
�v2

i

〉 = a
q2

m2
C(0) τc t , (7)

where a is a constant of order one. This is the familiar random walk behavior
where vrms =

√
〈�v2

i 〉 ∝ √
t . Note that here we are ignoring any damping effects,

which will eventually stop the growth of vrms.

2.2. Quantum Fluctuations

Now we wish to consider a model in which quantum, as opposed to classical
fluctuation, drive the Brownian motion of the test particle. It is not clear that there
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is any effect associated with fluctuations of the quantized electromagnetic field in
empty flat spacetime. However, there is a nontrivial effect produced by changes in
these fluctuations, as will occur in the presence of a boundary. The simplest such
boundary is a perfectly reflecting plane, and the resulting effects on Brownian
motion of a charged particle were recently discussed in Yu and Ford (2004). Here
we will summarize the results of that paper. Let the reflecting plane be at z = 0,
so we need to consider motion of the test particle in both the longitudinal (z)
direction, and in a transverse (x) direction.

The appropriate correlation functions are the renormalized two-point func-
tions, which are the differences in the two-point functions with and without the
plate,

Cz(τ, z) = 〈Ez(x, t ′) Ez(x, t ′′)〉 = 1

π2(τ 2 − 4z2)2
, (8)

and

Cx(τ, z) = 〈Ex(x, t ′) Ex(x, t ′′)〉 = 〈Ey(x, t ′) Ey(x, t ′′)〉 = − τ 2 + 4z2

π2(τ 2 − 4z2)3
.

(9)
Note that here 〈E〉 = 0. These correlation functions are plotted in Fig. 2. They are
singular at τ = 2 z, corresponding to the roundtrip light travel time to the plate,
and can be either positive or negative.

Despite the singularity, which can be attributed to the use of perfectly re-
flecting boundary conditions and a plate with a sharp boundary, the integral in
Equation (6) can be performed by an integration by parts approach. The results,
for t � z are

〈
�v2

x

〉 ≈ − q2

3π2m2

1

t2
− 8q2

5π2m2

z2

t4
, (10)

and

〈
�v2

z

〉 ≈ q2

4π2m2

1

z2
+ q2

3π2m2

1

t2
. (11)

Unlike the case of classical noise, here the mean squared velocities do not grow
in time. This is required by energy conservation, as there is no source of energy
from which the particles can acquire kinetic energy. The fact that 〈�v2

x〉 	= 0
reflects the fact that some energy is required to set up the system at t = 0, that
is, a transient effect. The mathematical reason that we do not find growing mean
squared velocities is that the correlation functions have both positive and negative
regions which tend to cancel one another so that∫ ∞

0
Cx(τ, z) dτ =

∫ ∞

0
Cz(τ, z) dτ = 0 . (12)
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Fig. 2. The renormalized electric field correlation
functions near a perfectly reflecting mirror are plotted
as functions of the time separation τ for fixed distance
z from the mirror. The solid line gives the correlation
function for the longitudinal components, Cz, and the
dotted line that for the transverse component, Cx . The
dimensionless quantities Cz z4 and Cx z4 are plotted.
Both functions are singular at τ = 2 z.

Unlike a thermal state, a quantum state such as we are considering here is highly
correlated, with subtle correlations and anticorrelations.

It may come as a surprise that the integral of Cz vanishes, as this appears to
be a positive function. However, the singularity at τ = 2z effectively contributes
a negative contribution when the integral is defined by integration by parts. A
simple example of this is the following:∫ ∞

−∞

dx

x2
= −

∫ ∞

−∞
dx

d

dx

(
1

x

)
= 0 . (13)

The apparently positive function 1/x2, when defined as a distribution, has a neg-
ative part at x = 0. We might be able to remove the singularities in Cx and Cz

by a more realistic model of the plate, such as one which includes dispersion and
surface roughness. However, if this were done, then Cz(τ ) would become a finite
function with a negative region near τ = 2z. Similar behavior was found for the
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mean squared electric field near a plate when the singularity was smeared out by
position fluctuations (Ford and Svaiter, 1998).

The mean squared displacements in both the transverse and longitudinal
directions can be found by integrating the Langevin equation, Equation (1) twice
and then squaring. In Yu and Ford (2004), it is shown that the mean squared
position fluctuations are, in the t � z limit,

〈�x2〉 ≈ − q2

3π2m2
ln(t/2z) , (14)

and

〈�z2〉 ≈ q2

π2m2

[
t2

8z2
+ 1

3
ln

(
t

2z

)
+ 1

9
+ O(z2/t2)

]
. (15)

It is of particular interest to note that 〈�x2〉 < 0. This can only be understood if
we account for the quantum nature of the test particles, and amounts to a reduction
in the usual quantum position uncertainty of the particle. The results summarized
in this subsection can also be generalized to the case of two parallel plates (Yu
and Chen, 2004).

2.3. Fluctuations of Radiation Pressure and Casimir Forces

The model discussed in the previous subsection can be viewed as an ana-
log model for active metric fluctuations in that the charged particle is coupled
directly to the quantized electric field. Here we wish to discuss some situations
that are analogous to the passive metric fluctuations. These arise when quantum
fluctuations of the electromagnetic field stress tensor cause force fluctuations on
uncharged material bodies.

One example of this is the fluctuations in radiation pressure when light
in a coherent state is reflected by a mirror. This effect was first discussed by
Caves (1980, 1981) using an approach based upon fluctuations in the numbers
pf photons striking the mirror. Caves’ results were later rederived and extended
using an approach (Wu and Ford, 2001) based upon the quantum stress tensor.
This approach requires an integration of a state-dependent, but singular cross
term, which must be performed by an integration by parts procedure. Consider a
free mirror of mass m and area A on which a linearly polarized beam of light in
a coherent state with energy density ρ shines perpendicularly for a time t . The
resulting uncertainty in the mirror’s velocity is

〈�v2〉 = 4
Aωρ

m2
t . (16)
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This uncertainty is likely to be a significant source of noise in future generations of
laser interferometry detectors of gravity waves. When it is detected experimentally,
it will constitute an observation of quantum stress tensor fluctuations.

Another phenomenon due to electromagnetic stress tensor fluctuations are the
fluctuations of Casimir forces, which have been discussed by several authors (Bar-
ton, 1991a,b; Eberlein, 1992a,b; Jaekel and Reynaud, 1992a,b, 1993a,b; Wu et al.,
2002). An example is the fluctuation of the Casimir–Polder force on an atom in
the presence of a reflecting plate discussed in Wu et al. (2002). Consider an atom
of mass m and static polarizability α at a distance z from the plate. The transverse
velocity fluctuations are found to be

〈�v2
x

〉 = 47

768

h2 α2

π4m2z8
(17)

and

〈�v2
z

〉 = −3787

3840

h2 α2

π4m2z8
. (18)

These results are analogous to Equations (10) and (11) for the charged particle
case. Again we can find suppression of the usual quantum uncertainty. In both
cases, there are subtle correlations in the quantum fluctuations, which is a typical
feature of quantum stress tensor fluctuations (Ford and Roman, 2004).

3. FLUCTUATING SPACETIME

Now we turn to a discussion of a few of the phenomena which can arise when
spacetime geometry fluctuates.

3.1. A Loophole in the Classical Singularity Theorems

The singularity theorems proven by Penrose, Hawking, and others show that
formation of a singularity is required in classical general relativity provided that
certain energy conditions are obeyed. It has long been recognized that quantum
matter fields can violate these classical energy conditions, for example in quantum
states with negative local energy densities. This allows the possibility of singularity
avoidance in semiclassical gravity, where a classical gravitational field is coupled
to the expectation value of a quantum matter stress tensor.

It is less well known that even very small fluctuations in spacetime also create
a distinct loophole in the singularity theorems (Ford, 2003). The reason for this
is that the proofs of the theorems all rely upon focusing arguments. However, a
bundle of geodesics will not come to an exact focus when there are fluctuations
around a background geometry. This does not mean that minute fluctuations will
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necessarily prevent the formation of a singularity, but the classical arguments for
singularity formation need to be revised.

3.2. Lightcone Fluctuations

One particularly striking effect of spacetime geometry fluctuations is that
there is no longer a fixed lightcone. Recall that the lightcone plays a central
role in classical relativity theory, as the boundary between events which can be
causally connected (time-like or null separations) and those which cannot (space-
like separations). Once the spacetime geometry undergoes fluctuation, no matter
how small, this strict distinction can no longer be maintained.

Here we will summarize an approach developed in Ford (1995); Ford and
Svaiter (1996, 1997); Yu and Ford (1999). (For other related discussions, see
Amelino-Camelia (1999); Amelino-Camelia et al. (1998); Ng and van Dam
(2000)). Let us consider a nearly flat spacetime with small metric fluctuations,
which can be described by a correlation function 〈hµν(x)hρλ(x ′)〉, where we as-
sume that 〈hµν(x)〉 = 0. The metric fluctuations could be due either to gravitons
in a nonclassical state (active fluctuations), or to fluctuations of a quantum mat-
ter stress tensor (passive fluctuations). Consider a source located at r = r0 and
a detector at r = r1. Then the mean flight time of light rays between the source
and the detector is the classical result, �r = r1 − r0. However, there will be a
root-mean-squared variation around this mean value of �t , given by

�t =
√〈

σ 2
1

〉
�r

, (19)

where 〈
σ 2

1

〉 = 1

8
(�r)2

∫ r1

r0

dr

∫ r1

r0

dr ′ nµnνnρnλ 〈hµν(x)hρλ(x ′)〉 . (20)

Here nµ is the tangent vector to the mean null geodesic separating the source and
detector, and σ1 is the first-order shift in the invariant interval σ separating the
events of emission and detection.

Here �t represents a mean time delay or advance relative to the classical
propagation time �r on the background spacetime. Thus, if we send a sequence
of pulses between the source and detector, some will take longer than the classical
time, but some will arrive sooner. This raises some interesting issues concerning
causality. Normally, signals sent outside of the lightcone could be used to send in-
formation into the past. On a flat background, the order of emission and detection
of a pulse traveling on a space-like path can be changed by a Lorentz transforma-
tion. In the case of spacetime fluctuations produced by a bath of gravitons or by
quantum matter fields in a nonvacuum state, there do not seem to be any causal
paradoxes. The source of the fluctuations defines a preferred frame of reference,
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and effectively breaks Lorentz invariance. The case of lightcone fluctuations in
the vacuum on a Minkowski spacetime is more subtle, and will probably require
a more complete quantum theory of gravity to be understood.

3.3. Fluctuations of the Expansion: The Langevin–Raychaudhuri Equation

The tendency of a gravitational field to act like a lens and to focus a bundle
of geodesics is described by the Raychaudhuri equation, Consider a congruence
of either time-like or null geodesics with affine parameter λ and tangent vector
field kµ. The Raychaudhuri equation gives the rate of change of the expansion θ

along the congruence to be

dθ

dλ
= −Rµνk

µkν − a θ2 − σµνσ
µν + ωµνω

µν . (21)

For definitions and derivation of this equation, see, for example, Wald (1984).
Here, Rµν is the Ricci tensor, σµν is the shear, and ωµν is the vorticity of the
congruence. The constant a = 1/2 for null geodesics, and a = 1/3 for time-like
geodesics. The expansion parameter θ is the logarithmic derivative of the cross-
sectional area A of the bundle:

θ = d log A

dλ
, (22)

so that θ < 0 describes the case of converging geodesics. For ordinary matter
obeying classical energy conditions, the Ricci tensor term acts to decrease θ ,
corresponding to the tendency of gravity to focus light rays. The Raychaudhuri
equation plays a crucial role in the proofs of the classical singularity theorems.

We are interested in interpreting this equation as a Langevin equation in
which the Ricci tensor fluctuates. A more detailed account of this work is given in
Borgman and Ford (2004). For the purposes of this paper, we will further assume
that the shear and vorticity of the congruence vanishes, and that the expansion
remains sufficiently small that the θ2 term can also be ignored, so we can write

dθ

dλ
= −Rµνk

µkν , (23)

The variance of the expansion can be expressed as a double integral of the Ricci
tensor correlation function as

〈(�θ )2〉 = 〈θ2〉 − 〈θ〉2 =
∫ λ0

0
dλ

∫ λ0

0
dλ′ Cµναβ(λ, λ′) kµ(λ)kν(λ) kα(λ′)kβ(λ′) ,

(24)
where

Cµναβ(x, x ′) = 〈Rµν(x)Rαβ(x ′)〉 − 〈Rµν(x)〉〈Rαβ(x ′)〉 . (25)
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Expansion fluctuations are sensitive only to the Ricci part of the curvature, and
hence to the passive fluctuations induced by the stress tensor fluctuations. Thus,
when both active and passive fluctuations are present, the expansion fluctuations
provide a signature of the passive part.

As discussed in Borgman and Ford (2004), the Ricci tensor correlation func-
tion has both state-independent and state-dependent singularities when x and x ′

are null separated. These singularities can removed by replacing the double line
integration in Equation (24) by integrations over a four-dimensional worldtube,
corresponding to the spacetime volume occupied by a finite wavepacket. One then
needs an integration by parts procedure to define the resulting four-dimensional
integrals.

Next, we need a physical interpretation of the result for �θ . One such inter-
pretation is a description of luminosity fluctuations. The focusing of a bundle of
rays, where gravity acts as a converging lens, increases the apparent luminosity of
a source. Conversely, defocusing (a decrease in θ ) decreases the apparent lumi-
nosity. Thus, fluctuations in θ produce variations in the observed luminosity of a
source. This is a well-known phenomenon in astronomy. Density fluctuations in the
Earth’s atmosphere lead to the twinkling of stars (“scintillation” in astronomer’s
terminology). In principle, quantum fluctuations of spacetime geometry could also
produce scintillation of distant sources.

In general, the fractional variation in luminosity of a source, �L/L, is given
by a double integral of a θ–θ correlation function:〈 (

�L

L

)2
〉

=
∫ s

0

∫ s

0
dt ′ dt ′′ [〈 θ (t ′) θ (t ′′) 〉 − 〈θ (t ′)〉 〈θ (t ′′)〉]. (26)

However, in some cases such as classical noise, the fractional luminosity fluctua-
tions are directly related to the value of �θ ,(

�L

L

)
rms

≈ s �θ , (27)

where s is the flight distance.
There is a distinct physical effect which may be estimated from a calculation

of �θ . This is the degree of angular blurring of a distant source due to passive
metric fluctuations. In Borgman and Ford (2004), an argument is given which
relates the root-mean-squared variation in angular position, �ϕ, of a source to the
variance of θ , with the result

�ϕrms = 1

2
s �θrms . (28)

This result is just a heuristic estimate, and a more precise formula for �ϕ will be
derived in the next subsection. For another discussion of the propagation of light
in a fluctuating geometry, see Hu and Shiokawa (1998).
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In the Minkowski vacuum state, the result obtained from Equation (24) is
formally infinite, unless we average over a finite bundle of geodesics. Let this aver-
aging be described by two length scales, a and b. Here a is the characteristic time
during which the bundle of photons is emitted, and b is the typical cross-sectional
dimension of the bundle, that is, its size in a spatial direction perpendicular to the
direction of propagation. The result is found to be of the form

〈(�θ )2〉vac = 4
P

256 A8 a2

5π2b8
, (29)

where P is the Planck length, and A8 is expected to be of order one. This leads to
the estimates

2�ϕ =
(

�L

L

)
rms

= 0.1 A8 2
P

as

b4
≈ 10−8 A8

(a

b

) (
10−10cm

b

)3 ( s

1028cm

)
.

(30)

Even if we were to take a and b to be of the order of the photon wavelength, the
smallest values they could reasonably have, this effect is too small to observe. It
is plausible that one should never observe the effects of stress tensor fluctuations
in the Minkowski vacuum, but that they should be masked by the usual quantum
uncertainty of the test particles.

A nonvacuum state, such as a thermal state, is a different story. In the case of
a thermal bath at temperature T and a bundle of rays that are localized on a scale
small compared to 1/T , one finds

�θrms = 128
√

c0

π
2

P

√
s T 7 , (31)

where s is the flight distance and c0 ≈ 0.3468. Here we find the
√

s behavior
characteristic of a random walk. This leads to the estimate(

�L

L

)
rms

= 0.02
( s

1028 cm

)3/2
(

T

106 K

)7/2

= 10−3
( s

106 km

)3/2
(

T

1 GeV

)7/2

.

(32)
Although the effects of thermal stress tensor fluctuations are typically small, they
are in principle observable far from the Planck scale.

The possibility of observable effects of stress tensor fluctuations due to com-
pact extra dimensions was discussed in Borgman and Ford (2004). The basic idea
is that the smaller the compact extra dimension, the more violent will be the quan-
tum stress tensor fluctuations of the Casimir energy due to the compactification,
potentially leading to observable angular blurring or luminosity fluctuations. It is
true that if we hold the Newton’s constant in the higher dimensional space fixed,
one finds that

�θrms ∝ G4+n

VC
, (33)
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where G4+n is the Newton’s constant in 4 + n dimensions, and VC is the volume of
the n-dimensional compact subspace. However, in Kaluza–Klein theories, G4+n

is related to the Newton’s constant in four dimensions by

G4+n = VC G4. (34)

This causes the observable effects to become independent of VC, and in fact the
same as in the Minkowski vacuum in a four-dimensional spacetime. Thus, one
cannot detect the existence of compact extra dimensions through angular blurring
or luminosity fluctuations.

3.4. Redshift Fluctuations and Angular Blurring

As has been noted above, two of the physical effects of the fluctuations of
spacetime are the angular blurring of images and fluctuations in gravitational
redshifts or blueshifts. In this subsection, we will provide a unified treatment of
both phenomena in terms of the Riemann tensor correlation function.

First consider a source and a detector moving along geodesics in a classical
gravitational field, as illustrated in Fig. 3. Let tµ be the four-velocity of the detector
and kµ be the tangent vector to the null geodesics separating the events of emission
and detection. The detected frequency of photons will be proportional to −kµ tµ.
The constant of proportionality depends upon the choice of normalization (affine
parameter) for kµ. Let 1 and 2 label two successive null geodesics, and k

µ

1 and
k

µ

2 be the values of kµ at the endpoints of each geodesic. Further choose the
normalization so that k

µ

1 = (1, 1, 0, 0) in the frame of the detector. This amounts
to choosing the affine parameter to coincide with the detector’s proper time at this
point. Then the fractional change in detected frequency between 1 and 2 is(

�ω

ω

)
= −(

k
µ

2 − k
µ

1

)
tµ . (35)

We are interested in the case where the frequency shift �ω/ω arises from the
effects of gravity, rather than from any change in the output of the source. This
can be enforced by requiring that the values of kµ at the starting points of each
null geodesic be related by parallel transport along the worldline of the source.
Because 1 and 2 are geodesics with tangent kµ, the values of kµ at the starting and
end points of each geodesic are related by parallel transport. Thus, if we parallel
transport k

µ

1 backwards along 1, along the worldline of the source to 2, and then
along 2 to the detector, the result will be k

µ

2 . Recall that if we parallel transport
a vector around a closed path, the change in the vector can be expressed as an
integral of the Riemann tensor over the area enclosed by the path. If the detector
is in a flat spacetime region, then there is no effect from the parallel transport
along the detector’s worldline, and �kµ = k

µ

2 − k
µ

1 is the change after transport
around the closed path. Let tµ be defined off of the detector’s worldline as the
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Fig. 3. A pair of null rays, 1 and 2 are emitted by
the source S and detected by the detector D. Ray 1
is emitted at point A and detected at point B, while
ray 2 is emitted at point D and detected at C. The
tangent vector to ray 1 at B is k

µ
1 , and that to ray

2 at C is k
µ
2 . The four-velocity of the detector is

tµ. Both the source and detector are moving along
geodesic paths. The shift in the null vector kµ is
obtained as an integral of the Riemann tensor over
the shaded region enclosed by the null and time-like
geodesics.

four-velocity of a congruence of time-like geodesics which include the worldlines
of both the source and the detector. Then we can write

�kµ =
∫

Rµ
ανβ kα tν kβ da , (36)

where the integration is over the 2-surface bounded by the four geodesic segments,
the shaded region in Fig. 3.

Now suppose that the Riemann tensor is subject to fluctuations (active or
passive or both) described by the correlation function

Cµανβ ργ σδ(x, x ′) = 〈Rµανβ(x) Rργσδ(x ′)〉 − 〈Rµανβ(x)〉 〈Rργσδ(x ′)〉 . (37)
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Then we can express the variance of the fractional redshift fluctuations as

δω2
rms =

〈(
�ω

ω

)2
〉

−
〈

�ω

ω

〉2

=
∫

da da′ Cµανβ ργ σδ(x, x ′) tµkαtνkβ tρkγ tσ kδ ,

(38)
where the indices µανβ are at point x and the indices ργ σδ are at x ′.

We can also relate the degree of angular blurring to the Riemann tensor
correlation function. Let sµ be a unit space-like vector in a direction orthogonal
to the direction of propagation of the null rays; thus sµtµ = sµkµ = 0. Then

�kµsµ = tan ϕ ≈ ϕ , (39)

where ϕ is the change in angle between 1 and 2 in the plane defined by the pair of
space-like vectors sµ and nµ = kµ − tµ. Here we are assuming that |ϕ| � 1. We
can express ϕ in terms of an integral of the Riemann tensor as

ϕ = �kµsµ =
∫

Rµανβ sµ kα tν kβ da . (40)

The variance of ϕ due to Riemann tensor fluctuations can be expressed as

�ϕ2 = 〈ϕ2〉 − 〈ϕ〉2 =
∫

da da′ Cµανβ ργ σδ(x, x ′) sµkαtνkβ sρkγ tσ kδ . (41)

In cases where the Riemann tensor fluctuation are dominated by Ricci tensor fluc-
tuation, the above result can be expressed in terms of the Ricci tensor correlation
function. In general, we expect the heuristic estimate Equation (28) to agree in
order of magnitude, but not in detail.

4. SUMMARY AND DISCUSSION

In this paper, we have discussed the idea that the operational meaning of
stochastic spacetime lies in quantities which describe the Brownian motion of
test particles, either massless or massive. Some electromagnetic analogies, such
as the motion of an electron or an atom in the modified vacuum fluctuations
near a reflecting plate provide useful insights into the types of effects one might
expect in quantum gravity. We examined several specific examples of Brownian
motion in a fluctuating gravitational field. These include lightcone fluctuations,
whereby the flight time of pulses between a source and a detector can fluctuate
around the classical flight time. One of the striking features of this effect is that
the rigid distinction between time-like and space-like intervals can no longer be
maintained when gravity fluctuates. We also reviewed recent work which treats
the Raychaudhuri equation as a Langevin equation to compute fluctuations in the
expansion of a bundle of geodesics. These fluctuations translate into luminosity
fluctuations of a source. Thus, distant objects would appear to “twinkle” when
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seen through a gravitational field with a fluctuating Ricci tensor. Finally, we
developed a formalism which gives a unified treatment of two other effects, redshift
fluctuations, and angular blurring. Both of these effects can arise when the Riemann
tensor in the region between a source and a detector undergoes fluctuations.

In most situations in the present day universe, these effects are small, but
they can in principle be large far from the Planck scale. Furthermore, they could
be significant in the early universe and other strong gravitational field situations.
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